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Abstract — In this work, using physical features extracted
from RF nonidealities in communicated EM signals, we show that
radio frequency physical unclonable function (RF-PUF) performs
much better compared to a solely convolutional neural network
(CNN) based secure authentication method, ORACLE. For the
static and quasi-static channels, respectively, we achieve 96% and
100% accuracy for RF-PUF compared to 87.13% and 98.6%
accuracy for authentication using ORACLE. For the first time,
RF-PUF has been applied for Wi-Fi devices to show that > 95%
accuracy can be achieved for a wide range of transmitter and
receiver separation from 2ft to 62ft both for the static and
quasi-static channel, showing a peak of ∼100% within 38ft
range for the static case. The design space has been explored
in detail. Finally, the concept of RF-PUF has been applied for
clustering to detect safe-listed devices.
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I. INTRODUCTION

A. Background and Motivation

The unprecedented growth in the Internet of Things

(IoT) devices has gifted humanity a smart, connected, and

comfortable life. But simultaneously, IoT devices pose a

new security threat as they are often either mobile or

placed in remote areas where unauthorized personnel can

have physical access to the device. Due to the wide

attacking surface and multiple security threats faced by

these devices, they are the weakest point of a large,

connected network and define the security of the whole

system. The traditional digital signature-based method involves

using a symmetric/asymmetric key, Hash-based Message

Authentication Codes (HMAC) [1], or OAuth 2.0 [2].

They are vulnerable to various key-hacking attacks and

cross-site-recovery forgery (CSRF) [3]. OAuth 2.0 requires

manual authentication which is often cumbersome in practice.

To address these issues, various physical signature-based

authentication methods have been proposed that use unique

device signatures, manifested as nonidealities in the RF signal.

Recent developments involve using complex deep neural

networks (CNN models, generative adversarial networks, etc.)

at the RX to find the pattern variation in unprocessed I-Q

samples. One such example is ORACLE [4], which uses an

AlexNet-like CNN structure to classify RF devices (Fig. 1(a)).

These methods ignore the fact that RF data are contaminated

with noise and interference and the absence of any data

processing and proper feature extraction cannot exploit the

full potential of physical signature variation. An alternative

method, called RF-PUF [5], performs authentication or trust
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Fig. 1. (a) Noise/interference may overwhelm RF nonidealities in a practical
channel. Raw samples with CNN (ORACLE) cannot use the full potential
of physical signatures. (b) RF-PUF groups the samples in frames to extract
proper features per frame to feed a NN, utilizing the physical signatures better.

augmentation using RF nonidealities and their statistical
parameters as features, analyzed through an onboard neural
network (NN) in an asymmetric network (Fig. 1(b)). In this

work, using a publicly available dataset [4] containing data

from 16 USRP TX, we show the performance of RF-PUF

over ORACLE (the method proposed by the authors of the

dataset in use). RF-PUF shows 96% and 100% accuracy for

static (fixed TX-RX separation) and quasi-static (a random

combination of different TX-RX separation) channels whereas

ORACLE shows 87.13% and 98.6% accuracy, respectively.

We also show that RF-PUF provides ∼100% accuracy for a

TX-RX separation of 38ft, and maintains > 95% accuracy up

to 62ft. The effect of channel length has been scrutinized and

the design space has been explored. In a more realistic scenario

of dynamic TX/RX, RF-PUF shows > 95% accuracy with

an optimum model capacity of the employed neural network.

Finally, RF-PUF has been applied for clustering the devices

in authorized and unauthorized groups.

B. Related Work

Different temporal and spectral properties of individual

transmitters have been used for RF fingerprinting in the past

[6], [7]. These methods have various limitations including

high oversampling ratio, transient detection, and the use of

fixed preamble. MAC-layer protocols have also been used

for device authentication. However, device identifiers in upper

layers like IMEI number, IP address, MAC address, etc. can

be easily attacked and spoofed [8]. Context-aware operation

enabled by self learning [9] for IoT communication focuses on

achieving minimum energy efficiency, but doesn’t address the

security issue. Recent work proposes to use dynamic irregular

clustering for augmenting trust [10]. Recently, a growing

number of works are using deep learning-based methods where

raw or slightly processed data are fed into a deep neural
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Fig. 2. (a) USRP X310 TX transmits IEEE 802.11a standard-compliant frames (generated in MATLAB) to a USRP B210 RX. (b) The experiment was performed
in a 70ft× 50ft room, where the distance between TX and RX is varied from 2ft to 62ft [4]. (c) Constellation diagram of the raw samples.

network [4], [11], [12], [13]. As wireless data are contaminated

with noise and interference, any use of the RF data without

processing always posits a risk of huge performance drop in

scenarios where environmental nonidealities can go beyond the

estimation that was used while designing the network. Also,

this approach doesn’t provide insight into design parameters.

C. Our Contribution

1) In this work, with the assistance of physical features

extracted from RF nonidealities, we have shown the
superiority of RF-PUF with much higher accuracy (100%
vs 98.6% for the static and 96% vs 87.13% for the
quasi-static channel) over ORACLE on a publicly available

dataset of 16 USRP X310 transmitters.

2) With a comprehensive analysis of TX-RX separation, we

have shown that RF-PUF provides ∼100% accuracy for a
TX-RX separation of 38ft, maintaining > 95% accuracy
all the way up to a large TX-RX separation of 62ft.

3) The design space has been explored in detail and the

effect of the model capacity of the neural network and the

amount of train-validation-test data has been analyzed. Also,

RF-PUF has been used on the same dataset for clustering.

II. DATASET USED FOR ANALYSIS

A. Experimental Setup and Collected Data

For this work, the “ORACLE RF Fingerprinting Dataset"

[4] by Northeastern University has been used which is

available publicly. This dataset contains data from 16 USRP

X310 radios, transmitting IEEE 802.11a standard-compliant

frames generated in MATLAB WLAN System Toolbox to a

USRP B210 radio (RX) as shown in Fig. 2(a). The TX-RX

separation was varied from 2ft to 62ft in 6ft steps in a large

70ft × 50ft room (Fig. 2(b)). The center carrier frequency

was 2.45GHz and the sampling rate was 5MS s−1.

B. Data Processing and Feature Extraction

Fig. 2(c) shows the I-Q representation of the received

samples. They were grouped in frames (2560 samples per

frame) and 1000 such frames were taken from each TX.

Features were extracted from each frame. The coarse carrier

frequency offset (CFO) and the ratio of the standard deviation

(σ) and mean (μ) of CFO, named coefficient of frequency

offset variation (COV), were used as two features. The real and

imaginary components of raw samples were taken as 8 other

features (10 features in total). From 16 devices, 1000 frames

from each, a feature set of size 10× 16000 was derived. The

whole set was distributed as 70%, 15%, and 15% for training,

validation, and test purposes respectively.

III. RESULTS

A. Static vs Quasi-static Channel

We have considered two specific scenarios. Firstly,

detection accuracy is calculated for one specific TX-RX

separation at a time, labeled as “static channel”. Later, a more

realistic approach is considered where the data for different

TX-RX separations have been randomly combined to form

a large dataset. This mimics a dynamic channel where the

TX-RX separation varies. We call this “Quasi-static channel”.

B. Comparison of RF-PUF with ORACLE framework

Sankhe et al. proposed the ORACLE method [4] using raw

I-Q samples directly with an AlexNet-like one-dimensional

CNN structure at the RX. RF data in general are contaminated

with noise, interference, and other unwanted emissions.

Contaminated data can render faulty predictions, especially if

the contrast between training and test environment is large. On

the other hand, using only statistical parameters as features can

force the NN to overfit, as it tends to converge around those

constant parameter values. RF-PUF follows a middle ground,

taking CFO (RF nonideality) and COV (statistical parameter)

along with raw samples. As a result, RF-PUF performs better

in similar conditions as shown in Table 1.

Table 1. Performance comparison of RF-PUF [5] and ORACLE [4] on the
same dataset shows that RF-PUF performs better in similar conditions.

Condition RF-PUF ORACLE
Fixed TX-RX separation 100% 98.6%

Mixed TX-RX separation 96% 87.13%

C. Device Detection in Static Channel

Fig. 3(a) shows detection accuracy with respect to TX-RX

separation. Using a lightweight NN (single layer with 20
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Fig. 3. (a) Accuracy plot for static channel shows > 95% accuracy even at 62ft. (b) Accuracy plot for quasi-static channel shows that increasing the number
of hidden layers and/or neurons per layer increases accuracy. (c) Increasing train-validation-test data also increases accuracy.

neurons), it has been shown that for up to 38ft, the accuracy

remains 100% (with an outlier at 26ft). Accuracy drops for

higher separation but remains > 95% up to 62ft.

D. Device Detection in Quasi-static Channel

The performance for the quasi-static channel is shown

below in terms of two important design parameters, the model

capacity of the neural network and the data volume.

1) Effect of the Model Capacity of the Network

Fig. 3(b) shows that accuracy increases with the increase

in both network width (the number of neurons per layer) and

depth (number of hidden layers). So higher model capacity of

the NN renders better performance.

2) Effect of Data Volume

Fig. 3(c) shows the effect of data volume on detection

accuracy. More sample per frame provides more information.

As a result, finding a pattern in the data becomes easier for

the NN, and hence accuracy also increases.

E. Clustering

At this point, the initial problem is redefined. Instead of

detecting each device individually, they are divided randomly

into two groups: authorized (10 devices) and unauthorized

(6 devices), and the group or cluster is detected. This is

particularly important in applications where specific device

detection is not required, rather the identification of safe-listed

or authorized devices is important. Here, the same set of

features and data distribution (70%, 15%, and 15% for training,

validation, and test purpose) have been used. Fig. 4(a) shows

that, except for one outlier at 26ft, the accuracy is > 95%
for the whole TX-RX separation range (2ft to 62ft) for a

static channel. Based on the application in hand, false positive

(FP) or false negative (FN) counts might be important. The

plot also shows that false positive (FP) or false negative (FN)

count curves overlap and except for one outlier, always remains

< 2.5%. Fig. 4(b) shows that the accuracy is a bit lower for

the quasi-static channel (> 90%), which can be improved with

more data or higher width and/or depth of the NN.
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Fig. 4. (a) Accuracy plot for clustering with the static channel. Accuracy is
> 95% in general with similar false positive and false negative count (both
< 2.5% in most cases). (b) Clustering for quasi-static channel shows > 90%
accuracy. Further improvement can be achieved with more data and higher
model capacity of the NN as discussed in subsection III-D.

IV. CONCLUSION

In this work, we show the inherent advantage of

RF-PUF, an authentication method for EM security using

RF nonidealities and their statistical parameters as features,

by showing its better performance over ORACLE, an

authentication method that depends solely on AlexNet-like

CNN structure. Using a publicly available Wi-Fi dataset of 16
USRP radios used as transmitters, it has been shown that >
95% accuracy can be achieved for a TX-RX separation range

of 2ft to 62ft with ∼100% accuracy even at 38ft. Detailed

analysis of the design space reveals that increasing data volume

and/or model capacity of the NN (either by increasing the

number of neurons per layer and/or the number of layers)

improves detection accuracy. Finally, RF-PUF has been applied

to the clustering problem where devices are divided into two

groups, showing > 95% accuracy for the static channel and

> 90% accuracy for the quasi-static scenario. This work

proves the efficacy and advantage of RF-PUF in EM security

which uses RF nonideality-based physical features without any

assistive preamble or modifications to the existing transmitter

devices whatsoever.
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